Current status and impending progress for cassava structural genomics

Author:

Lyons Jessica B.ORCID,Bredeson Jessen V.ORCID,Mansfeld Ben N.ORCID,Bauchet Guillaume JeanORCID,Berry JeffreyORCID,Boyher Adam,Mueller Lukas A.ORCID,Rokhsar Daniel S.ORCID,Bart Rebecca S.ORCID

Abstract

Key message We demystify recent advances in genome assemblies for the heterozygous staple crop cassava (Manihot esculenta), and highlight key cassava genomic resources. Abstract Cassava, Manihot esculenta Crantz, is a crop of societal and agricultural importance in tropical regions around the world. Genomics provides a platform for accelerated improvement of cassava’s nutritional and agronomic traits, as well as for illuminating aspects of cassava’s history including its path towards domestication. The highly heterozygous nature of the cassava genome is widely recognized. However, the full extent and context of this heterozygosity has been difficult to reveal because of technological limitations within genome sequencing. Only recently, with several new long-read sequencing technologies coming online, has the genomics community been able to tackle some similarly difficult genomes. In light of these recent advances, we provide this review to document the current status of the cassava genome and genomic resources and provide a perspective on what to look forward to in the coming years.

Funder

Bill and Melinda Gates Foundation

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3