λϕ4 theory — Part II. the broken phase beyond NNNN(NNNN)LO

Author:

Serone MarcoORCID,Spada Gabriele,Villadoro Giovanni

Abstract

Abstract We extend the study of the two-dimensional euclidean ϕ 4 theory initiated in ref. [1] to the ℤ2 broken phase. In particular, we compute in perturbation theory up to N4LO in the quartic coupling the vacuum energy, the vacuum expectation value of ϕ and the mass gap of the theory. We determine the large order behavior of the perturbative series by finding the leading order finite action complex instanton configuration in the ℤ2 broken phase. Using an appropriate conformal mapping, we then Borel resum the perturbative series. Interestingly enough, the truncated perturbative series for the vacuum energy and the vacuum expectation value of the field is reliable up to the critical coupling where a second order phase transition occurs, and breaks down around the transition for the mass gap. We compute the vacuum energy using also an alternative perturbative series, dubbed exact perturbation theory, that allows us to effectively reach N8LO in the quartic coupling. In this way we can access the strong coupling region of the ℤ2 broken phase and test Chang duality by comparing the vacuum energies computed in three different descriptions of the same physical system. This result can also be considered as a confirmation of the Borel summability of the theory. Our results are in very good agreement (and with comparable or better precision) with those obtained by Hamiltonian truncation methods. We also discuss some subtleties related to the physical interpretation of the mass gap and provide evidence that the kink mass can be obtained by analytic continuation from the unbroken to the broken phase.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Variational formalism for the Klein-Gordon oscillon;Physical Review D;2023-11-21

2. An anharmonic alliance: exact WKB meets EPT;Journal of High Energy Physics;2023-11-20

3. Real time lattice correlation functions from differential equations;Journal of High Energy Physics;2023-06-21

4. Semiclassical energy density of kinks and solitons;Physical Review D;2023-03-02

5. Cut-off kinks;Journal of High Energy Physics;2023-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3