Chaotic scattering of highly excited strings

Author:

Gross David J.,Rosenhaus Vladimir

Abstract

Abstract Motivated by the desire to understand chaos in the S-matrix of string theory, we study tree level scattering amplitudes involving highly excited strings. While the amplitudes for scattering of light strings have been a hallmark of string theory since its early days, scattering of excited strings has been far less studied. Recent results on black hole chaos, combined with the correspondence principle between black holes and strings, suggest that the amplitudes have a rich structure. We review the procedure by which an excited string is formed by repeatedly scattering photons off of an initial tachyon (the DDF formalism). We compute the scattering amplitude of one arbitrary excited string and any number of tachyons in bosonic string theory. At high energies and high mass excited state these amplitudes are determined by a saddle-point in the integration over the positions of the string vertex operators on the sphere (or the upper half plane), thus yielding a generalization of the “scattering equations”. We find a compact expression for the amplitude of an excited string decaying into two tachyons, and study its properties for a generic excited string. We find the amplitude is highly erratic as a function of both the precise excited string state and of the tachyon scattering angle relative to its polarization, a sign of chaos.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference109 articles.

1. S.H. Shenker and D. Stanford, Black holes and the butterfly effect, JHEP 03 (2014) 067 [arXiv:1306.0622] [INSPIRE].

2. A. Kitaev, Hidden correlations in the hawking radiation and thermal noise, talk given at the Fundamental Physics Prize Symposium, November 10, (2014), https://youtu.be/OQ9qN8j7EZI.

3. J. Polchinski, Chaos in the black hole S-matrix, arXiv:1505.08108 [INSPIRE].

4. V. Rosenhaus, Chaos in the QFT S-matrix, arXiv:2003.07381 [INSPIRE].

5. G.T. Horowitz and J. Polchinski, A correspondence principle for black holes and strings, Phys. Rev. D 55 (1997) 6189 [hep-th/9612146] [INSPIRE].

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An excursion into the string spectrum;Journal of High Energy Physics;2023-12-11

2. Deterministic chaos vs integrable models;Physical Review D;2023-11-29

3. Evaluating one-loop string amplitudes;SciPost Physics;2023-09-27

4. Measuring chaos in string scattering processes;Physical Review D;2023-09-07

5. 2-charge circular fuzz-balls and their perturbations;Journal of High Energy Physics;2023-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3