Author:
,Bergner Georg,Bodendorfer Norbert,Hanada Masanori,Pateloudis Stratos,Rinaldi Enrico,Schäfer Andreas,Vranas Pavlos,Watanabe Hiromasa
Abstract
Abstract
We study the confinement/deconfinement transition in the D0-brane matrix model (often called the BFSS matrix model) and its one-parameter deformation (the BMN matrix model) numerically by lattice Monte Carlo simulations. Our results confirm general expectations from the dual string/M-theory picture for strong coupling. In particular, we observe the confined phase in the BFSS matrix model, which is a nontrivial consequence of the M-theory picture. We suggest that these models provide us with an ideal framework to study the Schwarzschild black hole, M-theory, and furthermore, the parameter region of the phase transition between type IIA superstring theory and M-theory. A detailed study of M-theory via lattice Monte Carlo simulations of the D0-brane matrix model might be doable with much smaller computational resources than previously expected.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献