Abstract
Abstract
Regular black holes with nonsingular cores have been considered in several approaches to quantum gravity, and as agnostic frameworks to address the singularity problem and Hawking’s information paradox. While in a recent work we argued that the inner core is destabilized by linear perturbations, opposite claims were raised that regular black holes have in fact stable cores. To reconcile these arguments, we discuss a generalization of the geometrical framework, originally applied to Reissner-Nordtsröm black holes by Ori, and show that regular black holes have an exponentially growing Misner-Sharp mass at the inner horizon. This result can be taken as an indication that stable nonsingular black hole spacetimes are not the definitive endpoint of a quantum gravity regularization mechanism, and that nonperturbative backreation effects must be taken into account in order to provide a consistent description of the quantum-gravitational endpoint of gravitational stellar collapse.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference44 articles.
1. S. Hawking, The occurrence of singularities in cosmology. III. Causality and singularities, Proc. Roy. Soc. Lond. A A 300 (1967) 187.
2. S. W. Hawking and R. Penrose, The Singularities of gravitational collapse and cosmology, Proc. Roy. Soc. Lond. A 314 (1970) 529.
3. R. Penrose, Gravitational collapse and space-time singularities, Phys. Rev. Lett. 14 (1965) 57 [INSPIRE].
4. LIGO Scientific and Virgo collaborations, Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116 (2016) 061102 [arXiv:1602.03837] [INSPIRE].
5. LIGO Scientific and Virgo collaborations, GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence, Phys. Rev. Lett. 116 (2016) 241103 [arXiv:1606.04855] [INSPIRE].
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献