Scattering forms and the positive geometry of kinematics, color and the worldsheet

Author:

Arkani-Hamed Nima,Bai Yuntao,He Song,Yan Gongwang

Abstract

Abstract The search for a theory of the S-Matrix over the past five decades has revealed surprising geometric structures underlying scattering amplitudes ranging from the string worldsheet to the amplituhedron, but these are all geometries in auxiliary spaces as opposed to the kinematical space where amplitudes actually live. Motivated by recent advances providing a reformulation of the amplituhedron and planar $$ \mathcal{N} $$ N = 4 SYM amplitudes directly in kinematic space, we propose a novel geometric understanding of amplitudes in more general theories. The key idea is to think of amplitudes not as functions, but rather as differential forms on kinematic space. We explore the resulting picture for a wide range of massless theories in general spacetime dimensions. For the bi-adjoint ϕ 3 scalar theory, we establish a direct connection between its “scattering form” and a classic polytope — the associahedron — known to mathematicians since the 1960’s. We find an associahedron living naturally in kinematic space, and the tree level amplitude is simply the “canonical form” associated with this “positive geometry”. Fundamental physical properties such as locality and unitarity, as well as novel “soft” limits, are fully determined by the combinatorial geometry of this polytope. Furthermore, the moduli space for the open string worldsheet has also long been recognized as an associahedron. We show that the scattering equations act as a diffeomorphism between the interior of this old “worldsheet associahedron” and the new “kinematic associahedron”, providing a geometric interpretation and simple conceptual derivation of the bi-adjoint CHY formula. We also find “scattering forms” on kinematic space for Yang-Mills theory and the Non-linear Sigma Model, which are dual to the fully color-dressed amplitudes despite having no explicit color factors. This is possible due to a remarkable fact—“Color is Kinematics”— whereby kinematic wedge products in the scattering forms satisfy the same Jacobi relations as color factors. Finally, all our scattering forms are well-defined on the projectivized kinematic space, a property which can be seen to provide a geometric origin for color-kinematics duality.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference66 articles.

1. M.B. Green, J.H. Schwarz and E. Witten, Superstring theory, Cambridge University Press, Cambridge (1987).

2. J. Polchinski, String theory, Cambridge University Press, Cambridge U.K. (1998).

3. P. Deligne and D. Mumford, The irreducibility of the space of curves of given genus, Publ. Math. IHES 36 (1969) 75.

4. E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].

5. F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].

Cited by 161 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A universal splitting of tree-level string and particle scattering amplitudes;Physics Letters B;2024-09

2. The duality between color and kinematics and its applications;Journal of Physics A: Mathematical and Theoretical;2024-08-08

3. All-loop soft theorem for pions;Physical Review D;2024-08-07

4. Pions from higher-dimensional gluons: general realizations and stringy models;Journal of High Energy Physics;2024-07-16

5. Constructibility of AdS Supergluon Amplitudes;Physical Review Letters;2024-07-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3