Determination of Sulfide Consumption by Fe-bearing Components of Bentonites

Author:

Hadi Jebril,Greneche Jean-Marc,Wersin Paul,Koho Petri,Pastina BarbaraORCID

Abstract

AbstractGeologic repositories for spent nuclear fuel use bentonite as a buffer to protect the metallic containers confining the radioactive material. Sulfate-reducing bacteria, which may be present in groundwater, at the bentonite–host rock interface or eventually within the bentonite may produce sulfide, representing a potential threat for the metallic canisters, particularly copper. Bentonites can act as potential sulfide scavengers. Little is yet known, however, regarding the underlying mechanisms, the maximum extent of sulfide consumption, and the potential impacts on bentonite structure under repository conditions. In the current study, concentrated (4–150 mM) sulfide solutions were reacted in batch experiments with six natural Fe-bearing bentonites, with various purified Fe-bearing components of bentonite (a series of purified montmorillonites and three iron (oxyhydr)oxides), and with one synthetic mixture, for up to 1.5 months at pH values ranging from 7 to 13. The solutions were analyzed by colorimetry to determine sulfide and polysulfide concentrations and the solids were analyzed by 57Fe Mössbauer spectrometry to determine iron speciation. Important sulfide consumption coupled with a reduction of structural Fe in the clay samples was observed. Not all clay structural Fe was reactive toward sulfide; the proportion of active structural Fe depended on the clay structure and pH. In the presence of excess sulfide in solution regarding Fe in the solid sample, the clay structural Fe was found to be the main reactant while the reaction with iron (oxyhydr)oxides was largely inhibited. Three bentonite groups were distinguished, based on the sulfide oxidation capacity of their main clayey component.

Funder

Posiva Oy

University of Bern

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Soil Science,Water Science and Technology

Reference74 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3