Abstract
AbstractCaMnt is much less important than NaMnt due to its limited commercial applications. The time-dependent property of NaMnt gel has been studied extensively as it is exploited in many applications such as drilling mud and viscosity-modifier applications. In contrast, the time-dependent property of CaMnt suspension and the factors affecting it are largely unknown. The speciation of Ca2+ ions is one such factor to be evaluated. In the current study, pH and solids concentration were examined and then used to validate a recent theory on clay gel time dependency. The results supported the theory that a strong electrostatic double layer (EDL) repulsion in the 3-D network is needed to reorganize the structure and drive it toward the state of minimum free energy. The 12 wt.% CaMnt (STx-1b) gel displayed time-dependent behavior at pH 5 but not at its natural pH of 8.4. At pH 5, the interlayer Ca2+ ions became fully hydrated and desorbed from the platelet surface. This enhanced the EDL repulsion between the platelets. At pH >6.5, the positively charged hydrolysis product Ca(OH)+ began to form and was adsorbed, partially neutralizing the permanent layer charge and weakening the repulsion. However, at 19.4 wt.% solids, the gel displayed pronounced time-dependent behavior despite the high natural pH of 8. The platelets were much closer together, allowing the EDL force to operate and effect structural reorganization. The microstructure of these CaMnt gels showed high platelet concentrations interacting to form a relatively open structure. The microstructure of a kaolin (KGa-2) suspension which showed no time-dependent behavior even after 1 day of ageing revealed the importance of particle morphology and layer charge on time dependency. Its 3-D structure was formed by relatively thick, layered platelets with a low layer charge.
Funder
University of Western Australia
Publisher
Springer Science and Business Media LLC
Subject
Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Soil Science,Water Science and Technology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献