Effects of 7,8-Dihydroxyflavone on Lipid Isoprenoid and Rho Protein Levels in Brains of Aged C57BL/6 Mice

Author:

Ötzkan Sarah,Muller Walter E.,Gibson Wood W.,Eckert Gunter P.ORCID

Abstract

AbstractSynaptic impairment may be the main cause of cognitive dysfunction in brain aging that is probably due to a reduction in synaptic contact between the axonal buttons and dendritic spines. Rho proteins including the small GTPase Rac1 have become key regulators of neuronal morphogenesis that supports synaptic plasticity. Small Rho- and Ras-GTPases are post-translationally modified by the isoprenoids geranylgeranyl pyrophosphate (GGPP) and farnesyl pyrophosphate (FPP), respectively. For all GTPases, anchoring in the plasma membrane is essential for their activation by guanine nucleotide exchange factors (GEFs). Rac1-specific GEFs include the protein T lymphoma invasion and metastasis 1 (Tiam1). Tiam1 interacts with the TrkB receptor to mediate the brain-derived neurotrophic factor (BDNF)-induced activation of Rac1, resulting in cytoskeletal rearrangement and changes in cellular morphology. The flavonoid 7,8-dihydroxyflavone (7,8-DHF) acts as a highly affine-selective TrkB receptor agonist and causes the dimerization and autophosphorylation of the TrkB receptor and thus the activation of downstream signaling pathways. In the current study, we investigated the effects of 7,8-DHF on cerebral lipid isoprenoid and Rho protein levels in male C57BL/6 mice aged 3 and 23 months. Aged mice were daily treated with 100 mg/kg b.w. 7,8-DHF by oral gavage for 21 days. FPP, GGPP, and cholesterol levels were determined in brain tissue. In the same tissue, the protein content of Tiam1 and TrkB in was measured. The cellular localization of the small Rho-GTPase Rac1 and small Rab-GTPase Rab3A was studied in total brain homogenates and membrane preparations. We report the novel finding that 7,8-DHF restored levels of the Rho proteins Rac1 and Rab3A in membrane preparations isolated from brains of treated aged mice. The selective TrkB agonist 7,8-DHF did not affect BDNF and TrkB levels, but restored Tiam1 levels that were found to be reduced in brains of aged mice. FPP, GGPP, and cholesterol levels were significantly elevated in brains of aged mice but not changed by 7,8-DHF treatment. Hence, 7,8-DHF may be useful as pharmacological tool to treat age-related cognitive dysfunction although the underlying mechanisms need to be elucidated in detail.

Funder

Foundation for the National Institutes of Health

Projekt DEAL

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Novel plant bioactives, their antiaging potencies: reality and promises;Plant Bioactives as Natural Panacea Against Age-Induced Diseases;2023

2. Dietary Anti-Aging Polyphenols and Potential Mechanisms;Antioxidants;2021-02-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3