How I Would have been Differently Treated. Discrimination Through the Lens of Counterfactual Fairness

Author:

Loi MicheleORCID,Nappo FrancescoORCID,Viganò EleonoraORCID

Abstract

AbstractThe widespread use of algorithms for prediction-based decisions urges us to consider the question of what it means for a given act or practice to be discriminatory. Building upon work by Kusner and colleagues in the field of machine learning, we propose a counterfactual condition as a necessary requirement on discrimination. To demonstrate the philosophical relevance of the proposed condition, we consider two prominent accounts of discrimination in the recent literature, by Lippert-Rasmussen and Hellman respectively, that do not logically imply our condition and show that they face important objections. Specifically, Lippert-Rasmussen’s definition proves to be over-inclusive, as it classifies some acts or practices as discriminatory when they are not, whereas Hellman’s account turns out to lack explanatory power precisely insofar as it does not countenance a counterfactual condition on discrimination. By defending the necessity of our counterfactual condition, we set the conceptual limits for justified claims about the occurrence of discriminatory acts or practices in society, with immediate applications to the ethics of algorithmic decision-making.

Funder

H2020 Marie Skłodowska-Curie Actions

Ministero dell’Istruzione, dell’Università e della Ricerca

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Politecnico di Milano

Publisher

Springer Science and Business Media LLC

Subject

Law,Philosophy

Reference24 articles.

1. Alexander, Larry. 1992. What makes wrongful discrimination wrong? Biases, preferences, stereotypes, and proxies. University of Pennsylvania Law Review 141 (1): 149. https://doi.org/10.2307/3312397.

2. Binns, Reuben. 2018. Fairness in machine learning: Lessons from political philosophy. In Proceedings of the 1st conference on fairness, accountability and transparency, 149–59. PMLR. https://proceedings.mlr.press/v81/binns18a.html.

3. Castro, Clinton. 2022. Just machines. Public Affairs Quarterly 36 (2): 163–183. https://doi.org/10.5406/21520542.36.2.04.

4. Castro, Clinton, David O’Brien, and Ben Schwan. 2022. Egalitarian machine learning. Res Publica, August. https://doi.org/10.1007/s11158-022-09561-4.

5. Castro, Clinton. (ms). Just Machines. PhilArchive, latest version: 03–2022. https://philpapers.org/archive/CASJM.pdf

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3