Enhanced Fenton-like process over Cu/L(+)-ascorbic acid co-doping mesoporous silica for toxicity reduction of emerging contaminants

Author:

Liu Yuhang,Deng Wenxuan,Wu Xiaojun,Hu Chun,Lyu Lai

Abstract

AbstractEffective removal of emerging contaminants (ECs) to minimize their impacts on human health and the natural environment is a global priority. For the removal of ECs in water, we fabricated a seaweed spherical microsphere catalyst with Cu cation-π structures by in situ doping of Cu species and ascorbic acid in mesoporous silica (Cu-C-MSNs) via a hydrothermal method. The results indicate that bisphenol A (BPA) is substantially degraded within 5 min under natural conditions, with its biological toxicity considerably weakened. Moreover, industrial wastewater could also be effectively purified by Cu-C-MSNs/H2O2 system. The presence of metal sites and the complexation of ECs via cation-π interaction and π-π stacking on the catalyst surface were directly responsible for the polarization distribution of electrons, thus activating H2O2 and dissolved oxygen (DO). The removal of contaminants could be attributed primarily to 1) the activation of H2O2 into OH to attack the contaminants and 2) self-cleavage because of the transfer of electrons from the contaminants to the catalysts. This study provides an innovative solution for the effective treatment of ECs and has positive implications for easing global environmental crises.

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3