Impact of inorganic and organic pollutants from a Belgian wastewater treatment plant on adjacent surface and groundwaters

Author:

Luo Mingyue,Su Yiqi,Vandeputte Delphine Jenny,Jia Yuwei,Li Guanlei,Baeyens Willy,Huysmans Marijke,Elskens Marc,Gao Yue

Abstract

AbstractUnder the pressure of global droughts and water shortage, it is essential to evolve toward a sustainable and robust water system. One possible avenue is the maximum reuse of treated wastewater, but the quality of which determines its reuse. Therefore, inorganic (Cd, Pb, Cr, Ni, Cu, and As) and organic (xenoestrogens and polycyclic aromatic contaminants, PACs) contaminants were monthly monitored in an effluent of the wastewater treatment plant (WWTP), the surrounding surface waters and the local groundwater in Belgium. Dissolved and particulate concentrations of inorganic contaminants in these water bodies were analyzed. In addition, Diffusive Gradients in Thin-films (DGT) was used in situ to obtain bioavailable metal fractions. In the WWTP effluent and surface waters, only Ni exceeds the Annual Average-Environmental Quality Standard (AA-EQS), while in the groundwater, dissolved As was the predominant element. Moreover, in the surface and effluent waters the highest lability degrees were observed for Cd and Ni. The concentrations of these metal species in the effluent water were lower than in the other water bodies. Micro-organic pollutants, xenoestrogens and PACs were analyzed by dual Estrogen and Aryl hydrocarbon Receptor - Chemical Activated LUciferase gene eXpression (ER & AhR-CALUX) assays. Since the annual averaged (AA) bioequivalent concentration of E2 (0.18 ng/L) is below the AA-EQS standard (0.4 ng/L), and the bioequivalent concentration of benzo[a]pyrene never exceeded the maximum admissible concentration (MAC), the reclamation and reuse of treated wastewater for groundwater replenishment and agricultural irrigation should pose no environmental problems, at least in a short-term.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3