NNLO QCD corrections to event shapes at the LHC

Author:

Alvarez Manuel,Cantero Josu,Czakon Michal,Llorente Javier,Mitov Alexander,Poncelet ReneORCID

Abstract

Abstract In this work we perform the first ever calculation of jet event shapes at hadron colliders at next-to-next-to leading order (NNLO) in QCD. The inclusion of higher order corrections removes the shape difference observed between data and next-to-leading order predictions. The theory uncertainty at NNLO is comparable to, or slightly larger than, existing measurements. Except for narrow kinematical ranges where all-order resummation becomes important, the NNLO predictions for the event shapes considered in the present work are reliable. As a prime application of the results derived in this work we provide a detailed investigation of the prospects for the precision determination of the strong coupling constant and its running through TeV scales from LHC data.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference89 articles.

1. ALEPH collaboration, Studies of QCD at e+e− centre-of-mass energies between 91 GeV and 209 GeV, Eur. Phys. J. C 35 (2004) 457 [INSPIRE].

2. OPAL collaboration, Measurement of event shape distributions and moments in e+e− → hadrons at 91–209 GeV and a determination of αs, Eur. Phys. J. C 40 (2005) 287 [hep-ex/0503051] [INSPIRE].

3. DELPHI collaboration, A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP, Eur. Phys. J. C 29 (2003) 285 [hep-ex/0307048] [INSPIRE].

4. L3 collaboration, Studies of hadronic event structure in e+e− annihilation from 30 GeV to 209 GeV with the L3 detector, Phys. Rept. 399 (2004) 71 [hep-ex/0406049] [INSPIRE].

5. G. Dissertori et al., First determination of the strong coupling constant using NNLO predictions for hadronic event shapes in e+e− annihilations, JHEP 02 (2008) 040 [arXiv:0712.0327] [INSPIRE].

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3