Abstract
Abstract
We present a general solution for correlators of external boundary operators in black hole states of Jackiw-Teitelboim gravity. We use the Hilbert space constructed using the particle-with-spin interpretation of the Jackiw-Teitelboim action, which consists of wavefunctions defined on Lorentzian AdS2. The density of states of the gravitational system appears in the amplitude for a boundary particle to emit and reabsorb matter. Up to self-interactions of matter, a general correlator can be reduced in an energy basis to a product of amplitudes for interactions and Wilson polynomials mapping between boundary and bulk interactions.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference17 articles.
1. R. Jackiw, Lower dimensional gravity, Nucl. Phys. B 252 (1985) 343 [INSPIRE].
2. C. Teitelboim, Gravitation and Hamiltonian structure in two space-time dimensions, Phys. Lett. B 126 (1983) 41 [INSPIRE].
3. A. Almheiri and J. Polchinski, Models of AdS2 backreaction and holography, JHEP 11 (2015) 014 [arXiv:1402.6334] [INSPIRE].
4. S. Sachdev and J. Ye, Gapless spin fluid ground state in a random, quantum Heisenberg magnet, Phys. Rev. Lett. 70 (1993) 3339 [cond-mat/9212030] [INSPIRE].
5. A. Kitaev, A simple model of quantum holography (part 1), talk at KITP, http://online.kitp.ucsb.edu/online/entangled15/kitaev/, University of California, Santa Barbara, CA, U.S.A., 7 April 2015.
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献