Author:
Ibe Masahiro,Nakano Wakutaka,Shoji Yutaro,Suzuki Kazumine
Abstract
Abstract
The elastic scattering of an atomic nucleus plays a central role in dark matter direct detection experiments. In those experiments, it is usually assumed that the atomic electrons around the nucleus of the target material immediately follow the motion of the recoil nucleus. In reality, however, it takes some time for the electrons to catch up, which results in ionization and excitation of the atoms. In previous studies, those effects are taken into account by using the so-called Migdal’s approach, in which the final state ionization/excitation are treated separately from the nuclear recoil. In this paper, we reformulate the Migdal’s approach so that the “atomic recoil” cross section is obtained coherently, where we make transparent the energy-momentum conservation and the probability conservation. We show that the final state ionization/excitation can enhance the detectability of rather light dark matter in the GeV mass range via the nuclear scattering. We also discuss the coherent neutrino-nucleus scattering, where the same effects are expected.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Cited by
188 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献