Winding uplifts and the challenges of weak and strong SUSY breaking in AdS

Author:

Hebecker ArthurORCID,Leonhardt Sascha

Abstract

Abstract We discuss the problem of metastable SUSY breaking in the landscape. While this is clearly crucial for the various de Sitter proposals, it is also interesting to consider the SUSY breaking challenge in the AdS context. For example, it could be that a stronger form of the non-SUSY AdS conjecture holds: it would forbid even metastable non-SUSY AdS in cases where the SUSY-breaking scale is parametrically above/below the AdS scale. At the technical level, the present paper proposes to break SUSY using the multi-cosine-shaped axion potentials which arise if a long winding trajectory of a ‘complex-structure axion’ appears in the large-complex-structure limit of a Calabi-Yau orientifold. This has been studied in the context of ‘Winding Inflation’, but the potential for SUSY breaking has not been fully explored. We discuss the application to uplifting LVS vacua, point out the challenges which one faces in the KKLT context, and consider the possibility of violating the non-SUSY AdS conjecture in the type-IIA setting of DGKT.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New non-supersymmetric flux vacua in string theory;Journal of High Energy Physics;2023-12-20

2. Flux vacua with approximate flat directions;Journal of High Energy Physics;2022-10-13

3. The LVS parametric tadpole constraint;Journal of High Energy Physics;2022-07

4. Fuzzy Dark Matter candidates from string theory;Journal of High Energy Physics;2022-05-17

5. Completing the D7-brane local gaugino action;Journal of High Energy Physics;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3