Modeling of GERDA Phase II data

Author:

,Agostini M.,Bakalyarov A. M.,Balata M.,Barabanov I.,Baudis L.,Bauer C.,Bellotti E.,Belogurov S.,Bettini A.,Bezrukov L.,Borowicz D.,Bossio E.,Bothe V.,Brudanin V.,Brugnera R.,Caldwell A.,Cattadori C.,Chernogorov A.,Comellato T.,D’Andrea V.,Demidova E. V.,Di Marco N.,Domula A.,Doroshkevich E.,Egorov V.,Fischer F.,Fomina M.,Gangapshev A.,Garfagnini A.,Gooch C.,Grabmayr P.ORCID,Gurentsov V.,Gusev K.,Hakenmüller J.,Hemmer S.,Hiller R.,Hofmann W.,Hult M.,Inzhechik L. V.,Janicskó Csáthy J.,Jochum J.,Junker M.,Kazalov V.,Kermaïdic Y.,Kihm T.,Kirpichnikov I. V.,Klimenko A.,Kneißl R.,Knöpfle K. T.,Kochetov O.,Kornoukhov V. N.,Krause P.,Kuzminov V. V.,Laubenstein M.,Lazzaro A.,Lindner M.,Lippi I.,Lubashevskiy A.,Lubsandorzhiev B.,Lutter G.,Macolino C.,Majorovits B.,Maneschg W.,Miloradovic M.,Mingazheva R.,Misiaszek M.,Moseev P.,Nemchenok I.,Panas K.,Pandola L.,Pelczar K.,Pertoldi L.,Piseri P.,Pullia A.,Ransom C.,Riboldi S.,Rumyantseva N.,Sada C.,Salamida F.,Schönert S.,Schreiner J.,Schütt M.,Schütz A-K.,Schulz O.,Schwarz M.,Schwingenheuer B.,Selivanenko O.,Shevchik E.,Shirchenko M.,Simgen H.,Smolnikov A.,Stukov D.,Vanhoefer L.,Vasenko A. A.,Veresnikova A.,Vignoli C.,von Sturm K.,Wester T.,Wiesinger C.,Wojcik M.,Yanovich E.,Zatschler B.,Zhitnikov I.,Zhukov S. V.,Zinatulina D.,Zschocke A.,Zsigmond A. J.,Zuber K.,Zuzel G.

Abstract

Abstract The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ) decay of 76Ge. The technological challenge of Gerda is to operate in a “background-free” regime in the region of interest (ROI) after analysis cuts for the full 100 kg·yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around Qββ for the 0νββ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for Gerda Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of $$ {16.04}_{-0.85}^{+0.78}\cdotp {10}^{-3} $$ 16.04 0.85 + 0.78 · 10 3 cts/(keV·kg·yr) for the enriched BEGe data set and $$ {14.68}_{-0.52}^{+0.47}\cdotp {10}^{-3} $$ 14.68 0.52 + 0.47 · 10 3 cts/(keV·kg·yr) for the enriched coaxial data set. These values are similar to the one of Phase I despite a much larger number of detectors and hence radioactive hardware components.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Reference50 articles.

1. R.N. Mohapatra and A.Y. Smirnov, Neutrino Mass and New Physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [INSPIRE].

2. R.N. Mohapatra et al., Theory of neutrinos: A White paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE].

3. H. Päs and W. Rodejohann, Neutrinoless double beta decay, New J. Phys. 17 (2015) 115010.

4. Gerda collaboration, The Gerda experiment for the search of 0νββ decay in 76 Ge, Eur. Phys. J. C 73 (2013) 2330 [arXiv:1212.4067] [INSPIRE].

5. Gerda collaboration, Upgrade for Phase II of the Gerda experiment, Eur. Phys. J. C 78 (2018) 388 [arXiv:1711.01452] [INSPIRE].

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3