Modeling of GERDA Phase II data
-
Published:2020-03
Issue:3
Volume:2020
Page:
-
ISSN:1029-8479
-
Container-title:Journal of High Energy Physics
-
language:en
-
Short-container-title:J. High Energ. Phys.
Author:
, Agostini M., Bakalyarov A. M., Balata M., Barabanov I., Baudis L., Bauer C., Bellotti E., Belogurov S., Bettini A., Bezrukov L., Borowicz D., Bossio E., Bothe V., Brudanin V., Brugnera R., Caldwell A., Cattadori C., Chernogorov A., Comellato T., D’Andrea V., Demidova E. V., Di Marco N., Domula A., Doroshkevich E., Egorov V., Fischer F., Fomina M., Gangapshev A., Garfagnini A., Gooch C., Grabmayr P.ORCID, Gurentsov V., Gusev K., Hakenmüller J., Hemmer S., Hiller R., Hofmann W., Hult M., Inzhechik L. V., Janicskó Csáthy J., Jochum J., Junker M., Kazalov V., Kermaïdic Y., Kihm T., Kirpichnikov I. V., Klimenko A., Kneißl R., Knöpfle K. T., Kochetov O., Kornoukhov V. N., Krause P., Kuzminov V. V., Laubenstein M., Lazzaro A., Lindner M., Lippi I., Lubashevskiy A., Lubsandorzhiev B., Lutter G., Macolino C., Majorovits B., Maneschg W., Miloradovic M., Mingazheva R., Misiaszek M., Moseev P., Nemchenok I., Panas K., Pandola L., Pelczar K., Pertoldi L., Piseri P., Pullia A., Ransom C., Riboldi S., Rumyantseva N., Sada C., Salamida F., Schönert S., Schreiner J., Schütt M., Schütz A-K., Schulz O., Schwarz M., Schwingenheuer B., Selivanenko O., Shevchik E., Shirchenko M., Simgen H., Smolnikov A., Stukov D., Vanhoefer L., Vasenko A. A., Veresnikova A., Vignoli C., von Sturm K., Wester T., Wiesinger C., Wojcik M., Yanovich E., Zatschler B., Zhitnikov I., Zhukov S. V., Zinatulina D., Zschocke A., Zsigmond A. J., Zuber K., Zuzel G.
Abstract
Abstract
The GERmanium Detector Array (Gerda) experiment at the Gran Sasso underground laboratory (LNGS) of INFN is searching for neutrinoless double-beta (0νββ) decay of 76Ge. The technological challenge of Gerda is to operate in a “background-free” regime in the region of interest (ROI) after analysis cuts for the full 100 kg·yr target exposure of the experiment. A careful modeling and decomposition of the full-range energy spectrum is essential to predict the shape and composition of events in the ROI around Qββ for the 0νββ search, to extract a precise measurement of the half-life of the double-beta decay mode with neutrinos (2νββ) and in order to identify the location of residual impurities. The latter will permit future experiments to build strategies in order to further lower the background and achieve even better sensitivities. In this article the background decomposition prior to analysis cuts is presented for Gerda Phase II. The background model fit yields a flat spectrum in the ROI with a background index (BI) of $$ {16.04}_{-0.85}^{+0.78}\cdotp {10}^{-3} $$
16.04
−
0.85
+
0.78
·
10
−
3
cts/(keV·kg·yr) for the enriched BEGe data set and $$ {14.68}_{-0.52}^{+0.47}\cdotp {10}^{-3} $$
14.68
−
0.52
+
0.47
·
10
−
3
cts/(keV·kg·yr) for the enriched coaxial data set. These values are similar to the one of Phase I despite a much larger number of detectors and hence radioactive hardware components.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference50 articles.
1. R.N. Mohapatra and A.Y. Smirnov, Neutrino Mass and New Physics, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [hep-ph/0603118] [INSPIRE]. 2. R.N. Mohapatra et al., Theory of neutrinos: A White paper, Rept. Prog. Phys. 70 (2007) 1757 [hep-ph/0510213] [INSPIRE]. 3. H. Päs and W. Rodejohann, Neutrinoless double beta decay, New J. Phys. 17 (2015) 115010. 4. Gerda collaboration, The Gerda experiment for the search of 0νββ decay in 76 Ge, Eur. Phys. J. C 73 (2013) 2330 [arXiv:1212.4067] [INSPIRE]. 5. Gerda collaboration, Upgrade for Phase II of the Gerda experiment, Eur. Phys. J. C 78 (2018) 388 [arXiv:1711.01452] [INSPIRE].
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|