Separability, Boxicity, and Partial Orders

Author:

Díaz-Báñez José-Miguel,Horn Paul,Lopez Mario A.,Marín Nestaly,Ramírez-Vigueras Adriana,Solé-Pi OriolORCID,Stevens Alex,Urrutia Jorge

Abstract

AbstractA collection $$S=\{S_i, \ldots , S_n\}$$ S = { S i , , S n } of disjoint closed convex sets in $$\mathbb {R}^d$$ R d is separable if there exists a direction (a non-zero vector) $$ \overrightarrow{v}$$ v of $$\mathbb {R}^d$$ R d such that the elements of S can be removed, one at a time, by translating them an arbitrarily large distance in the direction $$ \overrightarrow{v}$$ v without hitting another element of S. We say that $$S_i \prec S_j$$ S i S j if $$S_j$$ S j has to be removed before we can remove $$S_i$$ S i . The relation $$\prec $$ defines a partial order $$P(S,\prec )$$ P ( S , ) on S which we call the separability order of S and $$ \overrightarrow{v}$$ v . A partial order $$P(X, \prec ')$$ P ( X , ) on $$X=\{x_1, \ldots , x_n\}$$ X = { x 1 , , x n } is called a separability order if there is a collection of convex sets S and a vector $$ \overrightarrow{v}$$ v in some $$\mathbb {R}^d$$ R d such that $$x_i \prec ' x_j$$ x i x j in $$P(X, \prec ')$$ P ( X , ) if and only if $$S_i \prec S_j$$ S i S j in $$P(S,\prec )$$ P ( S , ) . We prove that every partial order is the separability order of a collection of convex sets in $$\mathbb {R}^4$$ R 4 , and that any poset of dimension 2 is the separability order of a set of line segments in $$\mathbb {R}^3$$ R 3 . We then study the case when the convex sets are restricted to be boxes in d-dimensional spaces. We prove that any partial order is the separability order of a family of disjoint boxes in $$\mathbb {R}^d$$ R d for some $$d \le \lfloor \frac{n}{2} \rfloor +1$$ d n 2 + 1 . We prove that every poset of dimension 3 has a subdivision that is the separability order of boxes in $$\mathbb {R}^3$$ R 3 , that there are partial orders of dimension 2 that cannot be realized as box separability in $$\mathbb {R}^3$$ R 3 and that for any d there are posets with dimension d that are separability orders of boxes in $$\mathbb {R}^3$$ R 3 . We also prove that for any d there are partial orders with box separability dimension d; that is, d is the smallest dimension for which they are separable orders of sets of boxes in $$\mathbb {R}^d$$ R d .

Funder

Ministerio de Ciencia e Innovación

H2020 Marie Skłodowska-Curie Actions

Simons Collaboration Grant

University of Denver Evans Research Fund

Consejo Nacional de Ciencia y Tecnología

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Geometry and Topology,Algebra and Number Theory,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3