Abstract
AbstractLet L be a lattice of finite length and let d denote the minimum path length metric on the covering graph of L. For any $\xi =(x_{1},\dots ,x_{k})\in L^{k}$
ξ
=
(
x
1
,
…
,
x
k
)
∈
L
k
, an element y belonging to L is called a median of ξ if the sum d(y,x1) + ⋯ + d(y,xk) is minimal. The lattice L satisfies the c1-median property if, for any $\xi =(x_{1},\dots ,x_{k})\in L^{k}$
ξ
=
(
x
1
,
…
,
x
k
)
∈
L
k
and for any median y of ξ, $y\leq x_{1}\vee \dots \vee x_{k}$
y
≤
x
1
∨
⋯
∨
x
k
. Our main theorem asserts that if L is an upper semimodular lattice of finite length and the breadth of L is less than or equal to 2, then L satisfies the c1-median property. Also, we give a construction that yields semimodular lattices, and we use a particular case of this construction to prove that our theorem is sharp in the sense that 2 cannot be replaced by 3.
Funder
Nemzeti Kutatási, Fejlesztési és Innovaciós Alap
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Geometry and Topology,Algebra and Number Theory
Reference21 articles.
1. Bandelt, H.-J., Barthélemy, J.P.: Medians in median graphs. Discrete Applied Math. 8, 131–142 (1984)
2. Barbut, M.: Médiane, distributivité, éloignements. Centre de Mathématique, Sociale, Paris, 1961, Math. Sci. Hum. 70, 5–31 (1980)
3. Barthélemy, J.P.: Trois propriétés des médianes dans une treillis modulaire. Math. Sci. Hum. 75, 83-91 (1981)
4. Czédli, G., Grätzer, G.: Planar Semimodular Lattices: Structure and Diagrams. In: Grätzer, G., Wehrung, F. (eds.) Lattice Theory: Special Topics and Applications, pp 91–130. Birkhäuser, Cham (2014)
5. Czédli, G., Powers, R.C., White, J.M.: Planar graded lattices and the c1-median property. Order 33, 365–369 (2016)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献