Abstract
AbstractSuppose k ≥ 2 is an integer. Let Yk be the poset with elements x1,x2,y1,y2,…,yk− 1 such that y1 < y2 < ⋯ < yk− 1 < x1,x2 and let $Y_{k}^{\prime }$
Y
k
′
be the same poset but all relations reversed. We say that a family of subsets of [n] contains a copy of Yk on consecutive levels if it contains k + 1 subsets F1,F2,G1,G2,…,Gk− 1 such that G1 ⊂ G2 ⊂⋯ ⊂ Gk− 1 ⊂ F1,F2 and |F1| = |F2| = |Gk− 1| + 1 = |Gk− 2| + 2 = ⋯ = |G1| + k − 1. If both Yk and $Y^{\prime }_{k}$
Y
k
′
on consecutive levels are forbidden, the size of the largest such family is denoted by $\text {La}_{\mathrm {c}}\left (n, Y_{k}, Y^{\prime }_{k}\right )$
La
c
n
,
Y
k
,
Y
k
′
. In this paper, we will determine the exact value of $\text {La}_{\mathrm {c}}\left (n, Y_{k}, Y^{\prime }_{k}\right )$
La
c
n
,
Y
k
,
Y
k
′
.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Geometry and Topology,Algebra and Number Theory
Reference15 articles.
1. Burcsi, P., Nagy, D.: The method of double chains for largest families with excluded subposets. Electron. J. Graph Theory Appl. 1, 40–49 (2013)
2. DeBonis, A., Katona, G.O.H., Swanepoel, K.: Largest family without A∪B ⊂ C ∩ D. J. Combin. Theory Ser. A 111, 331–336 (2005)
3. Erdős, P.: On a lemma of littlewood and Offord. Bull. Am. Math. Soc. 51, 898–902 (1945)
4. Gerbner, D., Methuku, A., Nagy, D.T., Patkós, B., Vizer, M.: Vertex Turán problems for the oriented hypercube. arXiv:1807.06866
5. Gerbner, D., Methuku, A., Nagy, D.T., Patkós, B., Vizer, M.: Forbidding rank-preserving copies of a poset. Order 36, 611–620 (2019)