1. Baker, K.A.: Congruence-distributive polynomial reducts of lattices. Algebra Univers. 9(1), 142–145 (1979)
2. Barto, L., Krokhin, A., Willard, R.: Polymorphisms, and how to use them. In: Krokhin, A., Zivny, S. (eds.) The Constraint Satisfaction Problem: Complexity and Approximability, volume 7 of Dagstuhl Follow-Ups, pp. 1–44. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl (2017)
3. Bergman, C.: Universal Algebra, Volume 301 of Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton (2012). Fundamentals and selected topics
4. Bergman, C., Juedes, D., Slutzki, G.: Computational complexity of term-equivalence. Int. J. Algebra Comput. 9(1), 113–128 (1999)
5. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra, Volume 78 of Graduate Texts in Mathematics. Springer, New York-Berlin (1981)