Author:
Keszegh Balázs,Lemons Nathan,Pálvölgyi Dömötör
Funder
DOE Office of Science Advanced Computing Research (ASCR) program in Applied Mathematics
Department of Energy at Los Alamos National Laboratory
Hungarian National Science Fund (OTKA)
Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Geometry and Topology,Algebra and Number Theory
Reference15 articles.
1. Cheilaris, P., Keszegh, B., Pálvölgyi, D.: Unique-maximum and conflict-free colorings for hypergraphs and tree graphs. SIAM J. Discret. Math. 27(4), 1775–1787 (2013)
2. Asinowski, A., Cardinal, J., Cohen, N., Collette, S., Hackl, T., Hoffmann, M., Knauer, K., Langerman, S., Lason, M., Micek, P., Rote, G., Ueckerdt, T.: Coloring hypergraphs induced by dynamic point sets and bottomless rectangles, algorithms and data structures. Lect. Notes Comput. Sci. 8037, 73–84 (2013)
3. Cardinal, J., Knauer, K., Micek, P., Ueckerdt, T.: Making octants colorful and related covering decomposition problems. In: SODA ’14 Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 1424–1432
4. Keszegh, B.: Coloring half-planes and bottomless rectangles, Computational Geometry: Theory and Applications. Elsevier 45(9), 495–507 (2012)
5. Keszegh, B.: Weak conflict free colorings of point sets and simple regions. In: The 19th Canadian Conference on Computational Geometry (CCCG07), pp 97–100 (2007)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献