Antichains in the Bruhat Order for the Classes $$\mathcal {A}(n,k)$$

Author:

da Cruz Henrique F.

Abstract

AbstractLet $$\varvec{\mathcal {A}(n,k)}$$ A ( n , k ) represent the collection of all $$\varvec{n\times n}$$ n × n zero-and-one matrices, with the sum of all rows and columns equalling $$\varvec{k}$$ k . This set can be ordered by an extension of the classical Bruhat order for permutations, seen as permutation matrices. The Bruhat order on $$\varvec{\mathcal {A}(n,k)}$$ A ( n , k ) differs from the Bruhat order on permutations matrices not being, in general, graded, which results in some intriguing issues. In this paper, we focus on the maximum length of antichains in $$\varvec{\mathcal {A}(n,k)}$$ A ( n , k ) with the Bruhat order. The crucial fact that allows us to obtain our main results is that two distinct matrices in $$\varvec{\mathcal {A}(n,k)}$$ A ( n , k ) with an identical number of inversions cannot be compared using the Bruhat order. We construct sets of matrices in $$\varvec{\mathcal {A}(n,k)}$$ A ( n , k ) so that each set consists of matrices with the same number of inversions. These sets are hence antichains in $$\varvec{\mathcal {A}(n,k)}$$ A ( n , k ) . We use these sets to deduce lower bounds for the maximum length of antichains in these partially ordered sets.

Funder

Universidade da Beira Interior

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Geometry and Topology,Algebra and Number Theory,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3