Abstract
AbstractWe describe a partial order on finite simplicial complexes. This partial order provides a poset stratification of the product of the Ran space of a metric space and the nonnegative real numbers, through the Čech simplicial complex. We show that paths in this product space respecting its stratification induce simplicial maps between the endpoints of the path.
Publisher
Springer Science and Business Media LLC
Subject
Computational Theory and Mathematics,Geometry and Topology,Algebra and Number Theory
Reference21 articles.
1. Adamaszek, M., Adams, H., Frick, F.: Metric reconstruction via optimal transport. SIAM J. Appl. Algebra Geom. 2(4), 597–619 (2018). https://doi.org/10.1137/17M1148025
2. Adams, H., Carlsson, G.: Evasion paths in mobile sensor networks. Int. J. Robot. Res. 34(1), 90–104 (2015). https://doi.org/10.1177/0278364914548051
3. Ayala, D., Francis, J., Rozenblyum, N.: A stratified homotopy hypothesis. J. Eur. Math. Soc. (JEMS) 21(4), 1071–1178 (2019). https://doi.org/10.4171/JEMS/856
4. Ayala, D., Francis, J., Tanaka, H.L.: Local structures on stratified spaces. Adv. Math. 307, 903–1028 (2017). https://doi.org/10.1016/j.aim.2016.11.032
5. Bauer, U., Lesnick, M.: Induced matchings and the algebraic stability of persistence barcodes. J. Comput. Geom. 6(2), 162–191 (2015)