Abstract
AbstractDeductive verification has been successful in verifying interesting properties of real-world programs. One notable gap is the limited support for floating-point reasoning. This is unfortunate, as floating-point arithmetic is particularly unintuitive to reason about due to rounding as well as the presence of the special values infinity and ‘Not a Number’ (NaN). In this article, we present the first floating-point support in a deductive verification tool for the Java programming language. Our support in the KeY verifier handles floating-point arithmetics, transcendental functions, and potentially rounding-type casts. We achieve this with a combination of delegation to external SMT solvers on the one hand, and KeY-internal, rule-based reasoning on the other hand, exploiting the complementary strengths of both worlds. We evaluate this integration on new benchmarks and show that this approach is powerful enough to prove the absence of floating-point special values—often a prerequisite for correct programs—as well as functional properties, for realistic benchmarks.
Funder
Max Planck Institute for Software Systems (MPI-SWS)
Publisher
Springer Science and Business Media LLC
Subject
Information Systems,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献