Distributed graph queries over models@run.time for runtime monitoring of cyber-physical systems

Author:

Búr Márton,Szilágyi Gábor,Vörös András,Varró Dániel

Abstract

Abstract Smart cyber-physical systems (CPSs) have complex interaction with their environment which is rarely known in advance, and they heavily depend on intelligent data processing carried out over a heterogeneous and distributed computation platform with resource-constrained devices to monitor, manage and control autonomous behavior. First, we propose a distributed runtime model to capture the operational state and the context information of a smart CPS using directed, typed and attributed graphs as high-level knowledge representation. The runtime model is distributed among the participating nodes, and it is consistently kept up to date in a continuously evolving environment by a time-triggered model management protocol. Our runtime models offer a (domain-specific) model query and manipulation interface over the reliable communication middleware of the Data Distribution Service (DDS) standard widely used in the CPS domain. Then, we propose to carry out distributed runtime monitoring by capturing critical properties of interest in the form of graph queries, and design a distributed graph query evaluation algorithm for evaluating such graph queries over the distributed runtime model. As the key innovation, our (1) distributed runtime model extends existing publish–subscribe middleware (like DDS) used in real-time CPS applications by enabling the dynamic creation and deletion of graph nodes (without compile time limits). Moreover, (2) our distributed query evaluation extends existing graph query techniques by enabling query evaluation in a real-time, resource-constrained environment while still providing scalable performance. Our approach is illustrated, and an initial scalability evaluation is carried out on the MoDeS3 CPS demonstrator and the open Train Benchmark for graph queries.

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Subject

Information Systems,Software

Reference69 articles.

1. Headways on high speed lines. In: 9th World Congress on Railway Research, pp. 22–26 (2011)

2. Scenario-based automated evaluation of test traces of autonomous systems. In: DECS workshop at SAFECOMP (2013)

3. Decentralised LTL monitoring: Formal Methods in System Design 48(1–2), 46–93 (2016)

4. Foundations for streaming model transformations by complex event processing. Software & Systems Modeling, pp. 1–28 (2016)

5. Abril, M., Barber, F., Ingolotti, L., Salido, M., Tormos, P., Lova, A.: An assessment of railway capacity. Transp. Res. Part E Logist. Transp. Rev. 44(5), 774–806 (2008)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3