Author:
Hensel Christian,Junges Sebastian,Katoen Joost-Pieter,Quatmann Tim,Volk Matthias
Abstract
AbstractWe present the probabilistic model checker Storm. Storm supports the analysis of discrete- and continuous-time variants of both Markov chains and Markov decision processes. Storm has three major distinguishing features. It supports multiple input languages for Markov models, including the Jani and Prism modeling languages, dynamic fault trees, generalized stochastic Petri nets, and the probabilistic guarded command language. It has a modular setup in which solvers and symbolic engines can easily be exchanged. Its Python API allows for rapid prototyping by encapsulating Storm’s fast and scalable algorithms. This paper reports on the main features of Storm and explains how to effectively use them. A description is provided of the main distinguishing functionalities of Storm. Finally, an empirical evaluation of different configurations of Storm on the QComp 2019 benchmark set is presented.
Publisher
Springer Science and Business Media LLC
Subject
Information Systems,Software
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献