Non-Gaussian Lagrangian Stochastic Model for Wind Field Simulation in the Surface Layer

Author:

Liu Chao,Fu Li,Yang Dan,Miller David R.,Wang Junming

Abstract

AbstractWind field simulation in the surface layer is often used to manage natural resources in terms of air quality, gene flow (through pollen drift), and plant disease transmission (spore dispersion). Although Lagrangian stochastic (LS) models describe stochastic wind behaviors, such models assume that wind velocities follow Gaussian distributions. However, measured surface-layer wind velocities show a strong skewness and kurtosis. This paper presents an improved model, a non-Gaussian LS model, which incorporates controllable non-Gaussian random variables to simulate the targeted non-Gaussian velocity distribution with more accurate skewness and kurtosis. Wind velocity statistics generated by the non-Gaussian model are evaluated by using the field data from the Cooperative Atmospheric Surface Exchange Study, October 1999 experimental dataset and comparing the data with statistics from the original Gaussian model. Results show that the non-Gaussian model improves the wind trajectory simulation by stably producing precise skewness and kurtosis in simulated wind velocities without sacrificing other features of the traditional Gaussian LS model, such as the accuracy in the mean and variance of simulated velocities. This improvement also leads to better accuracy in friction velocity (i.e., a coupling of three-dimensional velocities). The model can also accommodate various non-Gaussian wind fields and a wide range of skewness–kurtosis combinations. Moreover, improved skewness and kurtosis in the simulated velocity will result in a significantly different dispersion for wind/particle simulations. Thus, the non-Gaussian model is worth applying to wind field simulation in the surface layer.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3