A Causality-guided Statistical Approach for Modeling Extreme Mei-yu Rainfall Based on Known Large-scale Modes—A Pilot Study

Author:

Ng Kelvin S.,Leckebusch Gregor C.,Hodges Kevin I.

Abstract

AbstractExtreme Mei-yu rainfall (MYR) can cause catastrophic impacts to the economic development and societal welfare in China. While significant improvements have been made in climate models, they often struggle to simulate local-to-regional extreme rainfall (e.g., MYR). Yet, large-scale climate modes (LSCMs) are relatively well represented in climate models. Since there exists a close relationship between MYR and various LSCMs, it might be possible to develop causality-guided statistical models for MYR prediction based on LSCMs. These statistical models could then be applied to climate model simulations to improve the representation of MYR in climate models.In this pilot study, it is demonstrated that skillful causality-guided statistical models for MYR can be constructed based on known LSCMs. The relevancy of the selected predictors for statistical models are found to be consistent with the literature. The importance of temporal resolution in constructing statistical models for MYR is also shown and is in good agreement with the literature. The results demonstrate the reliability of the causality-guided approach in studying complex circulation systems such as the East Asian summer monsoon (EASM). Some limitations and possible improvements of the current approach are discussed. The application of the causality-guided approach opens up a new possibility to uncover the complex interactions in the EASM in future studies.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Reference71 articles.

1. Angus, M., and G. C. Leckebusch, 2020: On the dependency of Atlantic hurricane and European windstorm hazards. Geophys. Res. Lett., 47, e2020GL090446, https://doi.org/10.1029/2020GL090446.

2. Befort, D. J., K. I. Hodges, and G. C. Leckebusch, 2016: East Asian rainfall in CMIP5 models: Contribution of tropical cyclones and Mei-yu front to spatio-temporal rainfall variability. Preprints. AGU Fall Meeting 2016, San Francisco.

3. Befort, D. J., K. Hodges, and G. C. Leckebusch, 2017: A new approach for estimating projected future changes in extreme rainfall over East Asia and its uncertainties including information about model performance on different scales. Preprints, AGU Fall Meeting 2017, New Orleans

4. Bell, B., and Coauthors, 2020: ERA5 hourly data on pressure levels from 1950 to 1978 (preliminary version). Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Accessed: 15 June 2021. [Available online from https://cds.climate.copernicus-climate.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels-preliminary-back-extension?tab=overview]

5. Bello, G. A., M. Angus, N. Pedemane, J. K. Harlalka, F. H. M. Semazzi, V. Kumar, and N. F. Samatova, 2015: Response-guided community detection: Application to climate index discovery. Proc. Joint European Conf. on Machine Learning and Knowledge Discovery in Databases, Porto, Springer, 736–751, https://doi.org/10.1007/978-3-319-23525-7_45.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3