A Deep Learning Method for Bias Correction of ECMWF 24–240 h Forecasts

Author:

Han Lei,Chen Mingxuan,Chen Kangkai,Chen Haonan,Zhang Yanbiao,Lu Bing,Song Linye,Qin Rui

Abstract

AbstractCorrecting the forecast bias of numerical weather prediction models is important for severe weather warnings. The refined grid forecast requires direct correction on gridded forecast products, as opposed to correcting forecast data only at individual weather stations. In this study, a deep learning method called CU-net is proposed to correct the gridded forecasts of four weather variables from the European Centre for Medium-Range Weather Forecast Integrated Forecasting System global model (ECMWF-IFS): 2-m temperature, 2-m relative humidity, 10-m wind speed, and 10-m wind direction, with a forecast lead time of 24 h to 240 h in North China. First, the forecast correction problem is transformed into an image-to-image translation problem in deep learning under the CU-net architecture, which is based on convolutional neural networks. Second, the ECMWF-IFS forecasts and ECMWF reanalysis data (ERA5) from 2005 to 2018 are used as training, validation, and testing datasets. The predictors and labels (ground truth) of the model are created using the ECMWF-IFS and ERA5, respectively. Finally, the correction performance of CU-net is compared with a conventional method, anomaly numerical correction with observations (ANO). Results show that forecasts from CU-net have lower root mean square error, bias, mean absolute error, and higher correlation coefficient than those from ANO for all forecast lead times from 24 h to 240 h. CU-net improves upon the ECMWF-IFS forecast for all four weather variables in terms of the above evaluation metrics, whereas ANO improves upon ECMWF-IFS performance only for 2-m temperature and relative humidity. For the correction of the 10-m wind direction forecast, which is often difficult to achieve, CU-net also improves the correction performance.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3