Application of a Neural Network to Store and Compute the Optical Properties of Non-Spherical Particles

Author:

Yu Jinhe,Bi Lei,Han Wei,Zhang Xiaoye

Abstract

AbstractRadiative transfer simulations and remote sensing studies fundamentally require accurate and efficient computation of the optical properties of non-spherical particles. This paper proposes a deep learning (DL) scheme in conjunction with an optical property database to achieve this goal. Deep neural network (DNN) architectures were obtained from a dataset of the optical properties of super-spheroids with extensive shape parameters, size parameters, and refractive indices. The dataset was computed through the invariant imbedding T-matrix method. Four separate DNN architectures were created to compute the extinction efficiency factor, single-scattering albedo, asymmetry factor, and phase matrix. The criterion for designing these neural networks was the achievement of the highest prediction accuracy with minimal DNN parameters. The numerical results demonstrate that the determination coefficients are greater than 0.999 between the prediction values from the neural networks and the truth values from the database, which indicates that the DNN can reproduce the optical properties in the dataset with high accuracy. In addition, the DNN model can robustly predict the optical properties of particles with high accuracy for shape parameters or refractive indices that are unavailable in the database. Importantly, the ratio of the database size (∼127 GB) to that of the DNN parameters (∼20 MB) is approximately 6810, implying that the DNN model can be treated as a highly compressed database that can be used as an alternative to the original database for real-time computing of the optical properties of non-spherical particles in radiative transfer and atmospheric models.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3