Use of Targeted Orographic Smoothing in Very High Resolution Simulations of a Downslope Windstorm and Rotor in a Sub-tropical Highland Location

Author:

Sheridan Peter,Xu Anlun,Li Jian,Furtado Kalli

Abstract

AbstractNested simulations of a downslope windstorm over Cangshan mountain, Yunnan, China, have been used to demonstrate a method of topographic smoothing that preserves a relatively large amount of terrain detail compared to typical smoothing procedures required for models with terrain-following grids to run stably. The simulations were carried out using the Met Office Unified Model (MetUM) to investigate downslope winds. The smoothing method seamlessly blends two terrain datasets to which uniform smoothing has been applied–one with a minimum of smoothing, the other smoothed more heavily to remove gradients that would cause model instabilities. The latter dataset dominates the blend where the steepest slopes exist, but this is localised and recedes outside these areas. As a result, increased detail is starkly apparent in depictions of flow simulated using the blend, compared to one using the default approach. This includes qualitative flow details that were absent in the latter, such as narrow shooting flows emerging from roughly 1–2 km wide leeside channels. Flow separation is more common due to steeper lee slopes. The use of targeted smoothing also results in increased lee side temporal variability at a given point during the windstorm, including over flat areas. Low-/high-pass filtering of the wind perturbation field reveals that relative spatial variability above 30 km in scale (reflecting the background flow) is similar whether or not targeting is used. Beneath this scale, when smoothing is targeted, relative flow variability decreases at the larger scales, and increases at lower scales. This seems linked to fast smaller scale flows disturbing more coherent flows (notably an along-valley current over Erhai Lake). Spatial variability of winds in the model is unsurprisingly weaker at key times than is observed across a local network sampling mesoscale variation, but results are compromised due to relatively few observation locations sampling the windstorm. Only when targeted smoothing is applied does the model capture the downslope windstorm’s extension over the city of Dali at the mountain’s foot, and the peak mean absolute wind.

Publisher

Springer Science and Business Media LLC

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3