Abstract
AbstractLactobacillus casei Zhang (Lac.z), isolated from traditional sour horse milk in Inner Mongolia, can alleviate various diseases and promote health. Our previous studies found that pretreatment with live Lac.z (L-Lac.z) could significantly attenuate acute kidney injury and delay the progression of chronic renal fibrosis. However, it is unknown whether these effects could be maintained by pasteurized Lac.z (P-Lac.z). Mouse models of acute kidney injury and chronic renal fibrosis induced by renal bilateral ischemia-reperfusion (BIR) surgery were treated with L-Lac.z or P-Lac.z by gavage. Serum and kidney samples were collected to analyze the extent of renal injury and fibrosis, and proteomics was used to explore the potential mechanisms underlying the differences in the effects of the two forms of Lac.z. The results revealed that treatment with L-Lac.z led to a reduction in serum urea nitrogen levels and in less renal tubular injury and subsequent renal fibrosis after BIR-induced renal injury, whereas these effects were not observed in the P-Lac.z group. Proteomic analysis revealed 19 up-regulated proteins and 39 down-regulated proteins in the P-Lac.z group, and these gene products were associated with growth and stress resistance. The specific nephroprotective effects of L-Lac.z may be independent of the interaction of live probiotics with the host.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC