Abstract
AbstractIn this paper we introduce a new distance by means of the so-called Szegő kernel and examine some basic properties and its relationship with the so-called Skwarczyński distance. We also examine the relationship between this distance, and the so-called Bergman distance and Szegő distance.
Publisher
Springer Science and Business Media LLC
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference17 articles.
1. Skwarczyński, M.: Biholomorphic Invariants Related to the Bergman Function, Dissertationes Mathematicae (Rozprawy Matematyczne). Polish Scientific Publishing Company, Warsaw (1980)
2. Krantz, S.G.: Function Theory of Several Complex Variables, 2nd edn. AMS Chelsea Publishing, New York (1992)
3. Fefferman, C.: Parabolic invariant theory in complex analysis. Adv. Math. 31(2), 131–262 (1979)
4. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)
5. Barrett, D., Lee, L.: On the Szegő metric. J. Geom. Anal. 24(1), 104–117 (2014)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. p-Skwarczyński distance;Complex Analysis and its Synergies;2023-11-30