Normoxia exposure reduces hemoglobin concentration and gill size in a hypoxia-tolerant tropical freshwater fish

Author:

Mucha StefanORCID,Chapman Lauren J.ORCID,Krahe RüdigerORCID

Abstract

AbstractHypoxia is a widespread environmental stressor that shapes fish physiology and morphology. Plasticity in traits that improve oxygen uptake and delivery or reduce oxygen requirements may be critical for fish to cope with fluctuating dissolved oxygen (DO) conditions in their natural habitat or adapt to new environments. In this study, we characterized a suite of morpho-physiological respiratory traits of a naturally hypoxia-acclimated weakly electric mormyrid fish, Petrocephalus degeni, and quantified their plasticity in response to long-term normoxia exposure. We captured P. degeni from a hypoxic swamp habitat (PO2 = 2.43 ± 1.85 kPa) surrounding Lake Nabugabo, Uganda, and acclimated them to normoxia (PO2 > 16 kPa) for up to 75 days. At various time points throughout normoxia exposure, we measured blood hemoglobin and lactate concentration, gill size, routine metabolic rate (RMR), regulation index (RI), and critical oxygen tension (Pcrit). We found that 62–75 days of normoxia exposure significantly reduced blood hemoglobin concentration (− 17%), gill filament length (− 14%), and hemibranch area (− 18%), whereas RMR, RI, Pcrit, and blood lactate showed no significant change. Our results support earlier findings that swamp-dwelling P. degeni are well adapted to life in chronic and severe hypoxia and indicate that they possess a limited capacity for phenotypic plasticity in response to a change in their DO environment.

Funder

Fonds de recherche du Québec – Nature et technologies

Natural Sciences and Engineering Research Council, Canada

NeuroCure Exzellenzcluster

Humboldt-Universität zu Berlin

Publisher

Springer Science and Business Media LLC

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3