Assessment of in situ nest decay rate for chimpanzees (Pan troglodytes ellioti Matschie, 1914) in Mbam-Djerem National Park, Cameroon: implications for long-term monitoring

Author:

Kamgang Serge AlexisORCID,Carme Tuneu Corral,Bobo Kadiri Serge,Abwe Ekwoge Enang,Gonder Mary Katherine,Sinsin Brice

Abstract

Abstract Accurate assessment of great ape populations is a prerequisite for conservation planning. Indirect survey methods using nest and dung, and a set of conversion parameters related to nest decay rates, are increasingly used. Most surveys use the standing crop nest count (SCNC) method, whereby nests are counted along transects and the estimated nest density is converted into chimpanzee density using an often non-local nest decay rate. The use of non-local decay rate is thought to introduce substantial bias to ape population estimates given that nest decay rates vary with location, season, rainfall, nest shape, and tree species used. SCNC method has previously been applied in Mbam-Djerem National Park (MDNP) in Cameroon, for chimpanzee surveys using a non-local nest decay rate. This current study aimed to measure a local nest decay rate for MDNP and implications for chimpanzee population estimates in the MDNP. The mean nest decay rate estimated using a logistic regression analysis was 127 [95% CI (100–160)] days. Moreover, the results suggested that rainfall strongly influenced the nest decay rate over the early stage of the lifetime of the nests. The study confirms that estimates of chimpanzee density and abundance using non-local decay rates should be treated with caution. Our research emphasized the importance of using local nest decay rates and other survey methods which do not depend on decay rates to obtain more accurate estimates of chimpanzee densities in order to inform conservation strategies of these great apes in MDNP.

Funder

Rufford Foundation

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3