3ETS+RD-LSTM: A New Hybrid Model for Electrical Energy Consumption Forecasting
Author:
Publisher
Springer International Publishing
Link
https://link.springer.com/content/pdf/10.1007/978-3-030-63836-8_43
Reference25 articles.
1. Dudek, G., Pełka, P., Smyl, S.: A hybrid residual dilated LSTM end exponential smoothing model for mid-term electric load forecasting. arXiv preprint arXiv:2004.00508 (2020)
2. Suganthi, L., Samuel, A.-A.: Energy models for demand forecasting - a review. Renew. Sust. Energ. Rev. 16(2), 1223–1240 (2002)
3. Barakat, E.H.: Modeling of nonstationary time-series data. Part II. Dynamic periodic trends. Int. J. Elec. Power 23, 63–68 (2001)
4. González-Romera, E., Jaramillo-Morán, M.-A., Carmona-Fernández, D.: Monthly electric energy demand forecasting with neural networks and Fourier series. Energ. Convers. Manage. 49, 3135–3142 (2008)
5. Chen, J.F., Lo, S.K., Do, Q.H.: Forecasting monthly electricity demands: an application of neural networks trained by heuristic algorithms. Information 8(1), 31 (2017)
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Forecasting electricity consumption by LSTM neural network;Bulletin of the Tomsk Polytechnic University Geo Assets Engineering;2023-12-27
2. STD: A Seasonal-Trend-Dispersion Decomposition of Time Series;IEEE Transactions on Knowledge and Data Engineering;2023-10-01
3. Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods;Energies;2023-01-11
4. Recurrent Neural Networks for Forecasting Time Series with Multiple Seasonality: A Comparative Study;Contributions to Statistics;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3