Author:
Roy Sudipto,Dubey Jigyasu
Publisher
Springer Nature Switzerland
Reference30 articles.
1. Rahman, M.S., Sultana, M.: Performance of Firth-and logF-type penalized methods in risk prediction for small or sparse binary data. BMC Med. Res. Methodol. 17, 33 (2017)
2. Floca, R., Bartling, S., Friesike, S.: Challenges of Open Data in Medical Research. In Opening Science. Springer, Cham, Switzerland (2014)
3. Marcoulides, G.A.: Discovering knowledge in data: an introduction to data mining, Daniel T. Larose. J. Am. Stat. Assoc. 100, 1465 (2005)
4. Shawe-Taylor, J., Anthony, M., Biggs, N.L.: Bounding sample size with the Vapnik-Chervonenkis dimension. Discret. Appl. Math. 42, 65–73 (1993)
5. Prusa, J., Khoshgoftaar, T.M., Seliya, N.: The effect of dataset size on training tweet sentiment classifiers. In: Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, pp. 9–11 (Dec 2015)