A LSTM-Based Method with Attention Mechanism for Adverse Drug Reaction Sentences Detection
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-030-36664-3_3
Reference24 articles.
1. Ji, Y., Ying, H., Dews, P., Mansour, A., Tran, J., Miller, R.E., Massanari, R.M.: A potential causal association mining algorithm for screening adverse drug reactions in postmarketing surveillance. IEEE Trans. Inf. Technol. Biomed. 15(3), 428–437 (2011). https://doi.org/10.1109/titb.2011.2131669
2. Harpaz, R., Callahan, A., Tamang, S., Low, Y., Odgers, D., Finlayson, S., Jung, K., LePendu, P., Shah, N.H.: Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 37(10), 777–790 (2014). https://doi.org/10.1007/s40264-014-0218-z
3. Segura-Bedmar, I., Martínez, P.: Pharmacovigilance through the development of text mining and natural language processing techniques. J. Biomed. Inf. 58, 288–291 (2015). https://doi.org/10.1016/j.jbi.2015.11.001
4. Demner-Fushman, D., Shooshan, S.E., Rodriguez, L., Aronson, A.R., Lang, F., Rogers, W., Roberts, K., Tonning, J.: A dataset of 200 structured product labels annotated for adverse drug reactions. Sci. Data 5(180), 001 (2018). https://doi.org/10.1038/sdata.2018.1
5. Gurulingappa, H., Rajput, A.M., Roberts, A., Fluck, J., Hofmann-Apitius, M., Toldo, L.: Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J. Biomed. Inf. 45, 885–892 (2012). https://doi.org/10.1016/j.jbi.2012.04.008
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A task-oriented deep learning framework based on target-related transformer network for industrial quality prediction applications;Engineering Applications of Artificial Intelligence;2024-07
2. Multiple features-based adverse drug reaction detection from social media using deep convolutional neural networks (DCNN);Multimedia Tools and Applications;2024-01-27
3. An attentive joint model with transformer-based weighted graph convolutional network for extracting adverse drug event relation;Journal of Biomedical Informatics;2022-01
4. A Weighted Online Recurrent Extreme Learning Machine-Based Method for Disease Names Recognition;Advanced Intelligent Systems for Sustainable Development (AI2SD’2020);2022
5. MTTLADE: A multi-task transfer learning-based method for adverse drug events extraction;Information Processing & Management;2021-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3