1. Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M.: Domain-adversarial neural networks. arXiv preprint arXiv:1412.4446 (2014)
2. Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., Tian, Q.: Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3941–3950 (2020)
3. Deng, W., Zheng, L., Sun, Y., Jiao, J.: Rethinking triplet loss for domain adaptation. IEEE Trans. Circuits Syst. Video Technol. 31(1), 29–37 (2020)
4. Donahue, J., et al.: A deep convolutional activation feature for generic visual recognition. UC Berkeley & ICSI, Berkeley, CA, USA
5. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)