Efficient Approximation of Asymmetric Shapley Values Using Functional Decomposition

Author:

Gevaert ArneORCID,Saranti AnnaORCID,Holzinger AndreasORCID,Saeys YvanORCID

Abstract

AbstractAsymmetric Shapley values (ASVs) are an extension of Shapley values that allow a user to incorporate partial causal knowledge into the explanation process. Unfortunately, computing ASVs requires sampling permutations, which quickly becomes computationally expensive. We propose A-PDD-SHAP, an algorithm that employs a functional decomposition approach to approximate ASVs at a speed orders of magnitude faster compared to permutation sampling, which significantly reduces the amortized complexity of computing ASVs when many explanations are needed. Apart from this, once the A-PDD-SHAP model is trained, it can be used to compute both symmetric and asymmetric Shapley values without having to re-train or re-sample, allowing for very efficient comparisons between different types of explanations.

Publisher

Springer Nature Switzerland

Reference23 articles.

1. Aas, K., Jullum, M., Løland, A.: Explaining individual predictions when features are dependent: more accurate approximations to Shapley values. Artif. Intell. 298, 103502 (2021). https://doi.org/10.1016/j.artint.2021.103502

2. Chen, H., Janizek, J.D., Lundberg, S., Lee, S.I.: True to the model or true to the data? (2020)

3. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)

4. Frye, C., de Mijolla, D., Begley, T., Cowton, L., Stanley, M., Feige, I.: Shapley explainability on the data manifold. In: International Conference on Learning Representations. arXiv (2021)

5. Frye, C., Rowat, C., Feige, I.: Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1229–1239. Curran Associates, Inc. (2020)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3