A Logical Treatment of Finite Automata

Author:

Rodrigues NishantORCID,Sebe Mircea OctavianORCID,Chen XiaohongORCID,Roşu GrigoreORCID

Abstract

AbstractWe present a sound and complete axiomatization of finite words using matching logic. A unique feature of our axiomatization is that it gives a shallow embedding of regular expressions into matching logic, and a logical representation of finite automata. The semantics of both expressions and automata are precisely captured as matching logic formulae that evaluate to the corresponding language. Regular expressions are matching logic formulae as is, while the embedding of automata is a structural analog—computational aspects of automata are captured as syntactic features. We demonstrate that our axiomatization is sound and complete by showing that runs of Brzozowski’s procedure for equivalence checking correspond to matching logic proofs. We propose this as a general methodology for producing machine-checkable formal proofs, enabled by capturing structural analogs of computational artifacts in logic. The proofs produced can be efficiently checked by the Metamath Zero verifier. Work presented in this paper contributes to the general scheme of achieving verifiable computing via logical methods, where computations are reduced to logical reasoning, encoded as machine-checkable proof objects, and checked by a trusted proof checker.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3