Formally verified asymptotic consensus in robust networks

Author:

Tekriwal Mohit,Tachna-Fram Avi,Jeannin Jean-Baptiste,Kapritsos Manos,Panagou Dimitra

Abstract

AbstractDistributed architectures are used to improve performance and reliability of various systems. Examples include drone swarms and load-balancing servers. An important capability of a distributed architecture is the ability to reach consensus among all its nodes. Several consensus algorithms have been proposed, and many of these algorithms come with intricate proofs of correctness, that are not mechanically checked. In the controls community, algorithms often achieve consensus asymptotically, e.g., for problems such as the design of human control systems, or the analysis of natural systems like bird flocking. This is in contrast to exact consensus algorithm such as Paxos, which have received much more recent attention in the formal methods community.This paper presents the first formal proof of an asymptotic consensus algorithm, and addresses various challenges in its formalization. Using the Coq proof assistant, we verify the correctness of a widely used consensus algorithm in the distributed controls community, the Weighted-Mean Subsequence Reduced (W-MSR) algorithm. We formalize the necessary and sufficient conditions required to achieve resilient asymptotic consensus under the assumed attacker model. During the formalization, we clarify several imprecisions in the paper proof, including an imprecision on quantifiers in the main theorem.

Publisher

Springer Nature Switzerland

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3