1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). https://www.tensorflow.org/. Software available from tensorflow.org
2. Abderrahmane, N., Miramond, B.: Information coding and hardware architecture of spiking neural networks. In: 2019 22nd Euromicro Conference on Digital System Design (DSD), pp. 291–298. IEEE, New York (2019)
3. Chollet, F., et al.: Keras (2015). https://keras.io
4. Courbariaux, M., Bengio, Y., David, J.P.: Binaryconnect: training deep neural networks with binary weights during propagations. In: Advances in Neural Information Processing Systems, pp. 3123–3131 (2015)
5. Delbruck, T.: Frame-free dynamic digital vision. In: Proceedings of International Symposium on Secure-Life Electronics, Advanced Electronics for Quality Life and Society, Tokyo, pp. 21–26 (2008)