Publisher
Springer Nature Switzerland
Reference13 articles.
1. Xiao, T., Zhang, C., Zha, H.: Learning to detect anomalies in surveillance video. IEEE Sig. Process. Lett. 22(9), 1477–1481 (2015). https://doi.org/10.1109/LSP.2015.2410031
2. Li, X., Li, W.: Object-oriented anomaly detection in surveillance videos. In: IEEE Conference Publication. IEEE Xplore (2022). https://ieeexplore.ieee.org/document/8461422. Accessed 2 June 2023
3. Koteswararao, M., Karthikeyan, P.R.: Comparative Analysis of YOLOv3–320 and YOLOv3-tiny for optimized real-time object detection system. In: IEEE Conference Publication. IEEE Xplore (2022). https://ieeexplore.ieee.org/document/9853186. Accessed 2 June 2023
4. Lu, Y., Zhang, L., Xie, W.: YOLO-compact: an efficient YOLO network for single category real-time object detection. In: Proceedings of the 32nd China Control and Decision Conference, CCDC 2020, pp. 1931–1936, August 2020. https://doi.org/10.1109/CCDC49329.2020.9164580
5. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. Part F129685, pp. 665–674, August 2017. https://doi.org/10.1145/3097983.3098052