Publisher
Springer International Publishing
Reference26 articles.
1. Bojanowski, P., et al.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2016)
2. Bowman, S.R., et al.: A large annotated corpus for learning natural language inference. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics (2015)
3. Cer, D., et al.: Universal sentence encoder. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 169–174. Association for Computational Linguistics, Brussels, Belgium (2018)
4. Conneau, A., et al.: Supervised learning of universal sentence representations from natural language inference data. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 670–680. Association for Computational Linguistics, Copenhagen, Denmark (2017)
5. Faruqui, M., et al.: Retrofitting word vectors to semantic lexicons. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 1606–1615. Association for Computational Linguistics (2015)