Summarising a Twitter Feed Using Weighted Frequency

Author:

Abohaia Zina Ahmed,Hassan Yousef Mamdouh

Abstract

AbstractData is growing exponentially every day, with 500 million tweets sent on Twitter alone (Desjardins 2021). Twitter feeds are long, take time to understand, are multilingual, and have multimedia. This makes it difficult to analyse in its raw form so the data needs to be extracted, cleaned, and structured, to be able to be used in research. This paper proposes summarising twitter feeds as a manner of structuring them. The objectives we sought to achieve are: (1) Use the Twitter API to retrieve tweets successfully, (2) Efficiently detect the language of text, and tokenize it to then analyse their content (in its language), (3) Use live tweets as the input instead of a database of tweets, (4) Create the interface as a plugin to make it accessible for computer scientists, and others, alike. We also aimed to test whether using weighted frequency to construct summaries of tweets would be successful, and by conducting a survey to test our results, we have found that our program is seen to be useful, accessible, and efficient at giving summarizations of twitter accounts. Weighted frequency also proved to be good at summarising text of any language, inputted.

Publisher

Springer Nature Switzerland

Reference10 articles.

1. Abohaia, Z., & Mamdouh, Y. (2022). Summarizing A Twitter Feed Using Weighted Frequency. Github. https://github.com/ZA8422/Summarizing-a-Twitter-Feed-using-Weighted-Frequency-.git. Accessed 21 Aug 2022

2. Adedoyin-Olowe, M., Medhat Gaber, M., & Stahl, F. (2021). A survey of data mining techniques for social network analysis. Journal of Data Mining & Digital Humanities. https://arxiv.org/abs/1312.4617 Accessed 6 June 2021

3. Bessagnet, M. (2019). A generic framework to perform comprehensive analysis of tweets. In: 7th International Workshop on Bibliometric-enhanced Information Retrieval. https://hal.archives-ouvertes.fr/hal-02414037. Accessed 6 June 2021

4. Casteleyn, J., Mottart, A., & Rutten, K. (2009). Forum - how to use Facebook in your market research. International Journal of Market Research, 51(4), 439–447.

5. Cheong, F., & Cheong, C. (2011). Social media data mining: a social network analysis of tweets during the 2010–2011 Australian floods. In: PACIFIC ASIA CONFERENCE ON INFORMATION SYSTEMS (PACIS) 2011 proceedings. https://aisel.aisnet.org/pacis2011/. Accessed 6 June 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3