Author:
Ghosh Reshmi,Kajal Harjeet Singh,Kamath Sharanya,Shrivastava Dhuri,Basu Samyadeep,Zeng Hansi,Srinivasan Soundararajan
Publisher
Springer Nature Switzerland
Reference24 articles.
1. Llopis, F., Rodríguez, A.F., González, J.L.V.: Text segmentation for efficient information retrieval. In: Proceedings of the Third International Conference on Computational Linguistics and Intelligent Text Processing CICLing, pp. 373–380 (2002) https://dl.acm.org/doi/abs/10.5555/647344.724145
2. Koshorek, O., Cohen, A., Mor, N., Rotman, M., Berant, J.: Text segmentation as a supervised learning task. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies ACL, vol. 2 (Short Papers) pp. 469–473, June 2018. https://doi.org/10.18653/v1/N18-2075
3. Chen, H., Branavan, S.R.K., Barzilay, R., Karger, David R.: Global models of document structure using latent permutations. In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics ACL, pp. 371–379 (2009). https://dl.acm.org/doi/abs/10.5555/1620754.1620808
4. Glavaš, G., Ganesh, A., Somasundaran, S.: Training and domain adaptation for supervised text segmentation. In: Proceedings of the 16th Workshop on Innovative Use of NLP for Building Educational Applications, pp. 110–116 (2021)
5. Lukasik, M., Dadachev, B., Papineni, K., Simões, G.: Text segmentation by cross segment attention. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) EMNLP (2020). https://aclanthology.org/2020.emnlp-main.380