Author:
Puchta Alexander,Frisch Marvin,Fleischer Jürgen
Publisher
Springer Nature Switzerland
Reference10 articles.
1. Aivatolis, P., Georgoulias, K., Chryssolouris, G.: The use of digital twin for predictive maintenance. Int. J. Comput. Integr. 32, 1067–1080 (2019)
2. Armendia, M., Ghassempouri, M., Ozturk, E., Peysson, F.: Twin-Control: A Digital Twin Approach to Improve Machine Tools Lifecycle. Springer, Cham (2019)
3. Him, L.C., Poh, Y.Y., Pheng, L.W.: Improvement of overall equipment effectiveness from predictive maintenance. In: International Conference on Digital Transformation and Applications (ICDXA) (2020)
4. Ilari, S., Carlo, F.D., Ciarapica, F.E., Bevilacqua, M.: Machine tool transition from Industry 3.0 to 4.0: a comparison between old machine retrofitting and the purchase of new machines from a triple bottom line perspective. Sustainability 13(18), 10441 (2021)
5. Gönnheimer, P., Ströbel, R., Fleischer, J.: Analytical approach for parameter identification in machine tools based on identifiable CNC reference runs. In: Liewald, M., Verl, A., Bauernhansl, T., Möhring, HC. (eds.) Production at the Leading Edge of Technology. WGP 2022. LNPE, pp. 494–503 (2022). https://doi.org/10.1007/978-3-031-18318-8_50