Efficient SMT-Based Analysis of Failure Propagation

Author:

Bozzano MarcoORCID,Cimatti AlessandroORCID,Fernandes Pires Anthony,Griggio AlbertoORCID,Jonáš MartinORCID,Kimberly Greg

Abstract

AbstractThe process of developing civil aircraft and their related systems includes multiple phases of Preliminary Safety Assessment (PSA). An objective of PSA is to link the classification of failure conditions and effects (produced in the functional hazard analysis phases) to appropriate safety requirements for elements in the aircraft architecture. A complete and correct preliminary safety assessment phase avoids potentially costly revisions to the design late in the design process. Hence, automated ways to support PSA are an important challenge in modern aircraft design. A modern approach to conducting PSAs is via the use of abstract propagation models, that are basically hyper-graphs where arcs model the dependency among components, e.g. how the degradation of one component may lead to the degraded or failed operation of another. Such models are used for computing failure propagations: the fault of a component may have multiple ramifications within the system, causing the malfunction of several interconnected components. A central aspect of this problem is that of identifying the minimal fault combinations, also referred to as minimal cut sets, that cause overall failures.In this paper we propose an expressive framework to model failure propagation, catering for multiple levels of degradation as well as cyclic and nondeterministic dependencies. We define a formal sequential semantics, and present an efficient SMT-based method for the analysis of failure propagation, able to enumerate cut sets that are minimal with respect to the order between levels of degradation. In contrast with the state of the art, the proposed approach is provably more expressive, and dramatically outperforms other systems when a comparison is possible.

Publisher

Springer International Publishing

Reference19 articles.

1. Abdelwahed, S., Karsai, G., Mahadevan, N., Ofsthun, S.C.: Practical implementation of diagnosis systems using timed failure propagation graph models. IEEE Trans. Instrum. Meas. 58(2), 240–247 (2009)

2. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo theories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications, pp. 825–885. IOS Press (2009)

3. Lecture Notes in Computer Science;B Bittner,2016

4. Bomanson, J., Gebser, M., Janhunen, T., Kaufmann, B., Schaub, T.: Answer set programming modulo acyclicity. Fundamenta Informaticae 147(1), 63–91 (2016)

5. Bozzano, M., Cimatti, A., Gario, M., Micheli, A.: SMT-based validation of timed failure propagation graphs. In: Bonet, B., Koenig, S. (eds.) Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas, USA, 25–30 January 2015, pp. 3724–3730. AAAI Press (2015)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RobDT: AI-enhanced Digital Twin for Space Exploration Robotic Assets;Studies in Computational Intelligence;2023

2. Analysis of Cyclic Fault Propagation via ASP;Logic Programming and Nonmonotonic Reasoning;2022

3. Efficient Analysis of Cyclic Redundancy Architectures via Boolean Fault Propagation;Tools and Algorithms for the Construction and Analysis of Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3